Abstract
Secara global, luka kronis merupakan masalah yang masih terbilang berat dalam penanganan, memerlukan ketekunan, biaya mahal, tenaga terlatih dan terampil. Proses pengkajian luka masih dilakukan secara manual, membutuhkan waktu yang cukup lama dan menghasilkan hasil yang lebih subyektif. Dengan adanya permasalahan tersebut, maka dibutuhkan inovasi berupa sistem yang membantu pengkajian luka dengan pendekatan citra digital atau dikenal dengan istilah digital planimetry. Fokus permasalahan yang diselesaikan hanya sebatas pada penggolongan komposisi jaringan luka dengan pendekatan segmentasi citra. Pada task segmentasi citra, algoritma yang digunakan yaitu fuzzy divergence yang dioptimasi menggunakan algoritma genetika untuk pemilihan nilai threshold optimal. Pada algoritma genetika, representasi kromosom berupa real-coded, proses reproduksi meliputi operasi extended intermediate crossover dan random mutation, serta metode seleksi elit dengan penambahan mekanisme random injection. Metode yang diusulkan dapat digunakan untuk mengoptimasi model segmentasi citra multilevel thresholding dengan meminimalkan nilai fuzzy divergence dengan parameter algoritma genetika; meliputi ukuran populasi sebesar 60, kombinasi ukuran cr dan mr secara berturut-turut 0.6 dan 0.4, dan ukuran generasi sebesar 100. Kemudian, berdasarkan evaluasi hasil segmentasi citra menggunakan Standar Deviasi (SD), distribusi Gamma menghasilkan hasil segmentasi yang lebih baik. Untuk hasil segmentasi citra yang lebih baik kaitannya dengan penggolongan komposisi jaringan luka kronis, perlu ditambahkan metode atau mekanisme untuk memisahkan daerah luka dan daerah non-luka terlebih dahulu.